Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.28.21259040

ABSTRACT

In May, 2021, during routine oil and gas industrial quarantine/premobilization procedures, four individuals who recently arrived to Louisiana from the Philippines tested positive for SARS-CoV-2. Subsequent genomic analysis showed that all were infected with a Variant of Interest (P.3-Theta). This increases the number of known P.3 infections in the United States to eleven and highlights the importance of genomic surveillance within industries that are prone to rapidly spread the infection.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.05.21251235

ABSTRACT

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.24.20078691

ABSTRACT

Despite the potential relevance to clinical outcome, intra-host dynamics of SARS-CoV-2 are unclear. Here, we quantify and characterize intra-host variation in SARS-CoV-2 raw sequence data uploaded to SRA as of 14 April 2020, and compare results between two sequencing methods (amplicon and RNA-Seq). Raw fastq files were quality filtered and trimmed using Trimmomatic, mapped to the WuhanHu1 reference genome using Bowtie2, and variants called with bcftools mpileup. To ensure sufficient coverage, we only included samples with 10X coverage for >90% of the genome (n=406 samples), and only variants with a depth >=10. Derived (i.e. non-reference) alleles were found at 408 sites. The number of polymorphic sites (i.e. sites with multiple alleles) within samples ranged from 0-13, with 72% of samples (295/406) having at least one polymorphic site. Correlation between number of polymorphic sites and coverage was very low for both sequencing methods (R2 < 0.1, p < 0.05). Polymorphisms were observed >1 sample at 66 sites (range: 2-38 samples). The minor allele frequency (MAF) at each shared polymorphic site was 0.03% - 48.5%. 33/66 sites occurred in ORF1a1b, and 37/66 changes were non-synonymous. At 10/66 sites, derived alleles were found in samples sequenced using both methods. Polymorphic amplicon samples were found at 10/10 positions, while polymorphic RNA-Seq samples were found at 7/10 positions. In conclusion, our results suggest that intra-host variation is prevalent among clinical samples. While mutations resulting from amplification and/or sequencing errors cannot be excluded, the observation of shared polymorphic sites with high MAF across multiple samples and sequencing methods is consistent with true underlying variation. Further investigation into intra-host evolutionary dynamics, particularly with longitudinal sampling, is critical for broader understanding of disease progression.


Subject(s)
Epilepsy, Absence
SELECTION OF CITATIONS
SEARCH DETAIL